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Introduction

BACKGROUND ON LUNG CANCER & 
STRESS RESPONSE

OBJECTIVE: COMPARE GENE 
EXPRESSION IN LUNG CANCER 

SAMPLES SUBJECTED TO DIFFERENT 
STRESS LEVELS.

METHODOLOGY: SPATIAL 
TRANSCRIPTOMICS USING 10X 

GENOMICS VISIUM & SEURAT PIPELINE



Stress in this project 
includes anything that 
has a chronic effect on 
the amygdala activity. 
It includes conditions 

like anxiety and 
depression. 

20 10x Visium 
samples.

Stress Levels determined by 

Questionnaires filled out by patients, and

Blood glucocorticoid levels.

Loss of one high stress sample due to detachment.

Background



Tumor Classification

For the initial analysis, all pathology annotations including 
Tumor cells is classified as TUMOR and everything else (non-
tumor area, healthy tissue, etc.) is classified as NON-TUMOR.

Types of Tumors detected:

NSCLC AC PEC



Stress and Tumor Groups

19 samples

Stress Sample 
Groups

9 High stress 
samples

10 Low Stress 
samples

Tumor areas 
(barcodes)

Non-Tumor

Tumor



Key Data Stats

• Range of reads per spot: between 19,144 (low 
PEC) and 30,002 (high PEC).

• Average: 25,581.

Number of reads 

The median number of genes detected per spot

varies widely (426 to 5,650).

Number of genes detected



Workflow Overview

1. Data Pre-
processing

2. Normalization & 
Feature Selection

3. PCA & Clustering 4. UMAP 
Visualization

5. Differential Gene 
Expression Analysis

6. Marker Gene 
Identification



Data Preprocessing

Quality Control: Removed spots with zero 
reads.

Normalization: Log-normalization and scaling 
using Seurat

Feature Selection: Top 2000 variable features 
using VST



Violin Plots per sample
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Dimensionality Reduction

Principal Component Analysis

Elbow Plot used to determine 
the number of PCs

Dimensionality Reduction and 
clustering



Unintegrated 
UMAP

Clustering without 
batch correction
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Integrated UMAP
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Used Harmony for batch correction:
reduced batch effects, and

Allowed biologically meaningful clustering.



Spatial Visualization

SpatialDimPlot of clusters 
on Visium slides

Overlay expression for 
spatial viewing.



Spatial Plot (8/19)



Spatial Plot (11/19)



Differential Expression Analysis

Identified differentially expressed genes (DEGs) 
between high and low stress groups, and between 

tumor and non-tumor barcodes. 

Findings are grouped into four categories:

High stress, non-tumor

Low stress, non-tumor

High stress, tumor

Low stress, tumor



Differential Gene Expression across the 4 
Groups



Marker Gene Analysis

Identified top 10 marker genes for each cluster.

Visualizing expression via marker heatmap.



Top 10 Marker Heatmap per Cluster
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Conclusion & Future Directions

Key Findings:

There is a marked difference between 

gene expression in high-stress and low-
stress samples.

Future Work:

Further validation of key marker genes.

Manually annotating the clusters.

Overlaying key marker genes on spatial plot.

 Integration with other omics data.
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